Three Point Cross for Mapping

Douglas J. Burks
Department of Biology
Wilmington College of Ohio
The Three Point Cross

- The three point cross.
 - Order three genes on a chromosome unambiguously.
 - Double crossover
 - Two crossing over events
 - Least frequent event
 - Dependent on probability of each single crossover
 - $c_1 \times c_2$ is probability
Three point cross

• Perform test cross $\text{AaBbCc} \times \text{aabbcc}$.
 – 1. Test for Independent assortment.
 • If not observed, then some type of linkage.
 – 2. Determine phenotypes that determine type of crossover.
 • Two most frequent phenotypes represent parental types (linkage in AaBbCc parent).
 • Two least frequent phenotype represent double crossover types.
 • Other four phenotypes represent single crossover types.
 – Organize by similar frequencies.
Some real data

- **v** = virescent gl = glossy va = variable sterile
- **phenotype**
<table>
<thead>
<tr>
<th># of individuals</th>
<th>gamete</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>235</td>
</tr>
<tr>
<td>glossy, variable sterile</td>
<td>62</td>
</tr>
<tr>
<td>variable sterile</td>
<td>40</td>
</tr>
<tr>
<td>variable sterile virescent</td>
<td>4</td>
</tr>
<tr>
<td>glossy, variable sterile, virescent</td>
<td>270</td>
</tr>
<tr>
<td>glossy</td>
<td>7</td>
</tr>
<tr>
<td>glossy, virescent</td>
<td>48</td>
</tr>
<tr>
<td>virescent</td>
<td>60</td>
</tr>
</tbody>
</table>
Rearrange Types

<table>
<thead>
<tr>
<th>Parental Type</th>
<th>Single crossover 1</th>
<th>Single crossover 2</th>
<th>Double crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenotype</td>
<td># of individuals</td>
<td>gamete</td>
<td># of individuals</td>
</tr>
<tr>
<td>normal</td>
<td>235</td>
<td>+ + +</td>
<td>virescent</td>
</tr>
<tr>
<td>glossy, variable sterile, virescent</td>
<td>270</td>
<td>gl va v</td>
<td>glossy, variable sterile</td>
</tr>
<tr>
<td>virescent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glossy, variable sterile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three Point Mapping

3. Determine the gene order
 - The gene that has changed linkage in double crossover must be in middle
 - display parental linkage
 - ++ +
 - gl va v
 - display double crossover and determine which gene change allele linkage (must be center gene)
 - gl ++
 - + va v
 - gl changed orientation from parental type
 - must be center gene
 - gl ++ + +
 - + va v gl va v
 - v----gl------va or va------gl --------v
• Calculate map distance
 – \(\mu = \frac{rf \cdot (sc + dc/total)}{100} \)
 – \(v \) ---- gl
 • \(v + + \) 60
 • \(+ gl va \) 62
 • \(+ gl + \) 7
 • \(v + va \) 4
 • 133
• \(\mu = \frac{133}{726} \times 100 = 18.3 \)
Three Point Mapping

- Calculate map distance
 - $\mu = rf \times (sc + dc/total) \times 100$
 - $gl ----- va$
 - + + va 40
 - $v gl + 48$
 - + gl + 7
 - $v + va 4$
 - 99
 - $\mu = (99/726) \times 100 = 13.6$
 - Map $gl \ldots va$
 - 13.6
Three Point Mapping

- Map vgl va
- 18.3 mu 13.6
- adjust for interference